109 research outputs found

    Spin-blockade spectroscopy of a two-level artificial molecule

    Full text link
    Coulomb and spin blockade spectroscopy investigations have been performed on an electrostatically defined ``artificial molecule'' connected to spin polarized leads. The molecule is first effectively reduced to a two-level system by placing both constituent atoms at a specific location of the level spectrum. The spin sensitivity of the conductance enables us to identify the electronic spin-states of the two-level molecule. We find in addition that the magnetic field induces variations in the tunnel coupling between the two atoms. The lateral nature of the device is evoked to explain this behavior.Comment: 4 pages, 4 figures; revised version with a minor change in Fig.2 and additional inset in Fig.3.;accepted by PR

    Spin Effects in a Quantum Ring

    Full text link
    Recent experiments are reviewed that explore the spin states of a ring-shaped many-electron quantum dot. Coulomb-blockade spectroscopy is used to access the spin degree of freedom. The Zeeman effect observed for states with successive electron number allows to select possible sequences of spin ground states of the ring. Spin-paired orbital levels can be identified by probing their response to magnetic fields normal to the plane of the ring and electric fields caused by suitable gate voltages. This narrows down the choice of ground-state spin sequences. A gate-controlled singlet--triplet transition is identified and the size of the exchange interaction matrix element is determined.Comment: 13 pages, 3 figures, Proceedings of the QD2004 conference in Banf

    Tunable Negative Differential Resistance controlled by Spin Blockade in Single Electron Transistors

    Full text link
    We demonstrate a tunable negative differential resistance controlled by spin blockade in single electron transistors. The single electron transistors containing a few electrons and spin polarized source and drain contacts were formed in GaAs/GaAlAs heterojunctions using metallic gates. Coulomb blockade measurements performed as a function of applied source-drain bias, electron number and magnetic field reveal well defined regimes where a decrease in the current is observed with increasing bias. We establish that the origin of the negative differential regime is the spin-polarized detection of electrons combined with a long spin relaxation time in the dot. These results indicate new functionalities that may be utilized in nano-spintronic devices in which the spin state is electro-statically controlled via the electron occupation number.Comment: 8 pages, 4 figure

    Spin splitting in open quantum dots

    Full text link
    We present results from a theoretical and experimental study of spin-splitting in small open lateral quantum dots (i.e. in the regime when the dot is connected to the reservoirs via leads that support one or more propagating modes). We demonstrate that the magnetoconductance shows a pronounced splitting of the conductance peaks (or dips) which persists over a wide range of magnetic fields (from zero field to the edge-state regime) and is virtually independent of magnetic field. A numerical analysis of the conductance and the dot eigenspectrum indicates that this feature is related to a lifting of the spin degeneracy in the corresponding closed dot associated with the interaction between electrons of opposite spin.Comment: 4 pages, 4 figures 1 misdirected figure reference corrected mismatch between spin-up/spin-down notation in figure 3-4 and discussion corrected, clarifications in text adde

    Coulomb and Spin blockade of two few-electrons quantum dots in series in the co-tunneling regime

    Full text link
    We present Coulomb Blockade measurements of two few-electron quantum dots in series which are configured such that the electrochemical potential of one of the two dots is aligned with spin-selective leads. The charge transfer through the system requires co-tunneling through the second dot which is notnot in resonance with the leads. The observed amplitude modulation of the resulting current is found to reflect spin blockade events occurring through either of the two dots. We also confirm that charge redistribution events occurring in the off-resonance dot are detected indirectly via changes in the electrochemical potential of the aligned dot.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    The Collapse of the Spin-Singlet Phase in Quantum Dots

    Full text link
    We present experimental and theoretical results on a new regime in quantum dots in which the filling factor 2 singlet state is replaced by new spin polarized phases. We make use of spin blockade spectroscopy to identify the transition to this new regime as a function of the number of electrons. The key experimental observation is a reversal of the phase in the systematic oscillation of the amplitude of Coulomb blockade peaks as the number of electrons is increased above a critical number. It is found theoretically that correlations are crucial to the existence of the new phases.Comment: REVTeX4, 4 pages, 4 figures, to appear in PR

    Concept study for a high-efficiency nanowire-based thermoelectric

    Full text link
    Materials capable of highly efficient, direct thermal-to-electric energy conversion would have substantial economic potential. Theory predicts that thermoelectric efficiencies approaching the Carnot limit can be achieved at low temperatures in one-dimensional conductors that contain an energy filter such as a double-barrier resonant tunneling structure. The recent advances in growth techniques suggest that such devices can now be realized in heterostructured, semiconductor nanowires. Here we propose specific structural parameters for InAs/InP nanowires that may allow the experimental observation of near-Carnot efficient thermoelectric energy conversion in a single nanowire at low temperature

    The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy

    Full text link
    Transport measurements are presented on a class of electrostatically defined lateral dots within a high mobility two dimensional electron gas (2DEG). The new design allows Coulomb Blockade(CB) measurements to be performed on a single lateral dot containing 0, 1 to over 50 electrons. The CB measurements are enhanced by the spin polarized injection from and into 2DEG magnetic edge states. This combines the measurement of charge with the measurement of spin through spin blockade spectroscopy. The results of Coulomb and spin blockade spectroscopy for first 45 electrons enable us to construct the addition spectrum of a lateral device. We also demonstrate that a lateral dot containing a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review

    Voltage-tunable singlet-triplet transition in lateral quantum dots

    Full text link
    Results of calculations and high source-drain transport measurements are presented which demonstrate voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the application of a judiciously-chosen gate voltage alters the ground-state of an electron pair from an entagled spin singlet to a spin triplet.Comment: 8.2 double-column pages, 10 eps figure

    Using single quantum states as spin filters to study spin polarization in ferromagnets

    Full text link
    By measuring electron tunneling between a ferromagnet and individual energy levels in an aluminum quantum dot, we show how spin-resolved quantum states can be used as filters to determine spin-dependent tunneling rates. We also observe magnetic-field-dependent shifts in the magnet's electrochemical potential relative to the dot's energy levels. The shifts vary between samples and are generally smaller than expected from the magnet's spin-polarized density of states. We suggest that they are affected by field-dependent charge redistribution at the magnetic interface.Comment: 4 pages, 1 color figur
    • …
    corecore